Variational Deep Q Network

نویسندگان

  • Yunhao Tang
  • Alp Kucukelbir
چکیده

We propose a framework that directly tackles the probability distribution of the value function parameters in Deep Q Network (DQN), with powerful variational inference subroutines to approximate the posterior of the parameters. We will establish the equivalence between our proposed surrogate objective and variational inference loss. Our new algorithm achieves efficient exploration and performs well on large scale chain Markov Decision Process (MDP).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Hypernetworks

We propose Bayesian hypernetworks: a framework for approximate Bayesian inference in neural networks. A Bayesian hypernetwork, h, is a neural network which learns to transform a simple noise distribution, p( ) = N (0, I), to a distribution q(θ) . = q(h( )) over the parameters θ of another neural network (the "primary network"). We train q with variational inference, using an invertible h to ena...

متن کامل

P-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy

The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...

متن کامل

Variational Probability Flow for Biologically Plausible Training of Deep Neural Networks

The quest for biologically plausible deep learning is driven, not just by the desire to explain experimentally-observed properties of biological neural networks, but also by the hope of discovering more efficient methods for training artificial networks. In this paper, we propose a new algorithm named Variational Probably Flow (VPF), an extension of minimum probability flow for training binary ...

متن کامل

Deep Variational Information Bottleneck

We present a variational approximation to the information bottleneck of Tishby et al. (1999). This variational approach allows us to parameterize the information bottleneck model using a neural network and leverage the reparameterization trick for efficient training. We call this method “Deep Variational Information Bottleneck”, or Deep VIB. We show that models trained with the VIB objective ou...

متن کامل

Bayesian Deep Q-Learning via Continuous-Time Flows

Efficient exploration in reinforcement learning (RL) can be achieved by incorporating uncertainty into model predictions. Bayesian deep Q-learning provides a principle way for this by modeling Q-values as probability distributions. We propose an efficient algorithm for Bayesian deep Q-learning by posterior sampling actions in the Q-function via continuous-time flows (CTFs), achieving efficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.11225  شماره 

صفحات  -

تاریخ انتشار 2017